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Abstract

In this paper, we design a class of high order accurate nonlinear weighted compact schemes that are higher order
extensions of the nonlinear weighted compact schemes proposed by Deng and Zhang [X. Deng, H. Zhang, Developing
high-order weighted compact nonlinear schemes, J. Comput. Phys. 165 (2000) 22-44] and the weighted essentially non-
oscillatory schemes of Jiang and Shu [G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Com-
put. Phys. 126 (1996) 202-228] and Balsara and Shu [D.S. Balsara, C.-W. Shu, Monotonicity preserving weighted essen-
tially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys. 160 (2000) 405-452]. These
nonlinear weighted compact schemes are proposed based on the cell-centered compact scheme of Lele [S.K. Lele, Compact
finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992) 16-42]. Instead of performing the non-
linear interpolation on the conservative variables as in Deng and Zhang (2000), we propose to directly interpolate the flux
on its stencil. Using the Lax—Friedrichs flux splitting and characteristic-wise projection, the resulted interpolation formulae
are similar to those of the regular WENO schemes. Hence, the detailed analysis and even many pieces of the code can be
directly copied from those of the regular WENO schemes. Through systematic test and comparison with the regular
WENO schemes, we observe that the nonlinear weighted compact schemes have the same ability to capture strong discon-
tinuities, while the resolution of short waves is improved and numerical dissipation is reduced.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

There are two typical approaches to design high order finite difference schemes for solving partial differen-
tial equations. The first is the traditional concept that the derivative of a function on the numerical grid is
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approximated by a linear combination of the function on a subset of the grid (stencil). The linear combination
coefficients should satisfy certain order conditions in order to achieve a high order accurate approximation to
the derivative. This is the standard finite difference method that is called a non-compact finite difference
scheme by Adams and Shariff [1]. The second approach to design finite difference schemes, corresponding
to the so-called compact schemes, is to form a linear combination of the unknown approximations to the
derivative at the grid points in a stencil, and equate it with another linear combination of the function itself
at the grid points in the same stencil. The word “compact” corresponds to the fact that for the same order of
accuracy, the stencil can be more compact in the second approach. However, a linear system must be solved to
obtain approximations to the derivative at the grid points for compact schemes, thus the effective stencil for
the approximation of the derivative at a grid point, in terms of the function values in the mesh, is not compact
at all. The most influential reference for compact schemes is [26].

The weighted essentially non-oscillatory (WENO) finite difference scheme [19] is a typical high order non-
compact finite difference scheme suitable for solving convection dominated partial differential equations
containing possible discontinuities in the solutions, such as the Euler or Navier—Stokes equations in compu-
tational fluid dynamics. It is an extension of the essentially non-oscillatory (ENO) scheme which was intro-
duced by Harten et al. [15]. The accuracy can be improved to the optimal order in smooth regions while
the essentially non-oscillatory property near discontinuities is maintained. The WENO idea was first intro-
duced by Liu et al. [27], in which the authors used a cell average approach (finite volume framework) to con-
vert an rth order ENO scheme to an (» 4+ 1)th order WENO scheme. Based on the pointwise finite difference
ENO scheme [38,39] and by a careful design of the smoothness indicator and nonlinear weights, the WENO
scheme in [19] can achieve the optimal (2r — 1)th order accuracy when converting an rth order ENO scheme,
while still keeping the essentially non-oscillatory property near shock waves. The WENO schemes have the
two desirable properties that they capture discontinuities and maintain high order accuracy. It has been
applied to many problems containing discontinuous solutions. We refer to the recent review paper [37] for
more details.

Even though the order of accuracy for explicit finite difference WENO schemes can be designed to be arbi-
trarily high, such as the eleventh order WENO scheme developed by Balsara and Shu [2], the resolution of
short waves of such high order explicit finite difference schemes is not ideal. The order of accuracy refers
to the asymptotic behavior of the scheme for solving smooth solutions when the mesh size becomes small.
In applications, for example in wave dominated problems such as aeroacoustics and turbulence, we often need
to approximate solutions on a relatively coarse mesh with respect to the wave frequencies that we would like to
resolve. The scheme’s ability to resolve short wavelengths relative to a given mesh can be represented by a dis-
persion relation. The best method to simulate wave dominated problems is the spectral method [4,11,22],
which is high order accurate and has the best dispersion relation. However, the spectral method has its
own limitation as it imposes significant restrictions on the geometry and boundary conditions. Typical explicit
high order finite difference schemes, corresponding to the choice of linear combination coefficients to maximize
the order of accuracy for a given stencil, do not have optimal dispersion relations. To overcome this drawback,
there are efforts in the literature to modify the linear combination coefficients in a finite difference scheme to
improve its dispersion relation, at the price of lowering the achievable order of accuracy corresponding to a
given stencil. Tam and Webb [42] used this strategy to develop a dispersion relation preserving (DRP) finite
difference scheme. Ponziani et al. [33] and Wang and Chen [43] also used this strategy to develop optimal
WENO schemes for dispersion relationships.

A good choice to simulate wave dominated problems is the compact scheme, which typically has better dis-
persion relation than a finite difference scheme of the same order of accuracy. Early discussion of compact
schemes can be found in [17,23]. In [26], Lele developed a family of compact schemes for the first and second
derivatives. Through systematic Fourier analysis, it is shown that these compact schemes have spectral-like
resolution for short waves. In practice, compact approximations on a cell-centered mesh has superiority
due to their smaller numerical viscosity. Nagarajan et. al [31] and Boersma [3] used staggered mesh compact
schemes to simulate compressible flows. Numerical tests indicate that their methods are quite robust. Through
coupling the second derivatives, Mahesh [28] developed a family of compact schemes with good spectral-like
resolution. Shukla and Zhong [40] developed a compact scheme for non-uniform meshes. Upwind compact
schemes were also developed [6,10,48] for solving nonlinear hyperbolic problems. The compact schemes have
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been extensively applied to direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulence
[7,25,29,30].

Compact schemes also have their drawbacks. They usually have low or even non-existent numerical dissi-
pation. This is an advantage for the resolution of waves, but it also causes problems for nonlinear hyperbolic
problems with shock waves or sharp gradients in the solution. Supersonic turbulence boundary or mixing lay-
ers are practical examples. For this kind of problems, a natural choice is to use a hybrid scheme. In the smooth
region, a compact scheme is used; while in the region near the discontinuities, a scheme that can capture shock
waves without oscillations is used. There have been many efforts to test this idea. Adams and Sheriff [1] applied
a hybrid compact-ENO scheme to shock turbulence interaction. Pirozzoli [32] tested a hybrid compact-
WENO scheme to the same problem. Mahesh et al. [29] used a sixth order ENO scheme to compute the spatial
derivatives around the shock wave in the streamwise direction (normal-shock) and a compact scheme to com-
pute all other spatial derivatives. Although hybrid schemes can overcome some drawbacks of both numerical
schemes, new problems could arise. For example, the use of a hybrid compact-ENO or compact-WENO
scheme needs indicators to distinguish discontinuities. To find a suitable indicator for discontinuities in a com-
plex flow is a difficult problem. Switching frequently between two different schemes may cause a loss in the
accuracy and resolution. Moreover, because the two different schemes have quite different structures, the
hybrid scheme is often not efficient in parallel computing.

Based on the cell-centered compact scheme of Lele [26], Deng and Mackawa [8] and Deng and Zhang [9]
developed a class of nonlinear compact schemes based on the idea of ENO and WENO respectively. In this
scheme, the flux at the cell center is computed through a nonlinear combination of several lower order formu-
lae on the substencil similar to the numerical flux of the WENO scheme. Their numerical results indicate that,
comparing with the regular ENO and WENO schemes, their nonlinear compact scheme has better wave res-
olution and similar ability to capture strong shock waves. Based on the Padé type compact scheme of Lele [26],
Jiang et al. [21] developed a weighted compact scheme. This weighted compact scheme is a combination of
several compact schemes constructed on different substencils.

In this paper, we further explore the nonlinear weighted compact scheme of Deng and Zhang [9], with
the objective of improving its accuracy, performance and efficiency. First, instead of using the nonlinear
interpolation of the conservative variables as in [9], we propose to directly interpolate the flux on its stencil.
Using the Lax—Friedrichs flux splitting and characteristic-wise projection, the resulted interpolation formu-
lae are similar to those of the regular WENO schemes [19]. Hence, the detailed analysis and even many
pieces of the code can be directly copied from those of the regular WENO schemes. Second, we extend
the weighted compact scheme to higher order accuracy, up to eighth order. Systematic numerical test
and comparison are performed.

This paper is organized as follows. In Section 2, we derive the formulae for the nonlinear weighted compact
schemes. Section 3 contains a Fourier analysis to systemically analyze the wave resolution of central compact
and weighted compact schemes. Accuracy tests are performed in Section 4. Numerical tests for problems
including strong shock waves are shown in Section 5. The convergence to steady state solutions is studied
for the fourth order weighted compact scheme in Section 6. Section 7 contains concluding remarks.

2. Scheme formulation

We consider numerical approximations to the solution of the conservation law

ou , of ()

ot Ox

A semidiscrete finite difference scheme can be represented as

<%)i _ (2.2)

where f is the approximation to the spatial derivative at the grid node x;. In this section, we apply the WENO
idea [19] to the linear cell-centered compact scheme proposed by Lele [26] and develop a class of weighted
compact schemes similar to those in [9] that can capture discontinuities.

—0. (2.1)
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2.1. Cell-centered compact scheme

Lele [26] proposed a linear cell-centered compact scheme which has the following form:

Jis — fis N bf,-+g —fia  Jin _fif%. (2.3)

Bfiat+ofiy +fi+afiy+Bfla=c 5Ax 3Ax A
Notice that the left hand side of the compact scheme (2.3) is a linear combination of the unknown approxi-
mations to the derivative fj’ at some nodes x; near x;, while the right hand side is a linear combination of the
function itself at half nodes (cell centers) x, - The constraints on the coefficients «, 3, a, b and ¢ correspond to
different orders of accuracy that can be derived by matching the Taylor series coefficients and these have been
listed in Lele [26]. We list them again in Table 2.1 for later use.

If =0, ¢c=0, a fourth order tridiagonal compact scheme is obtained with a =3(3 —2«) and
b ={(22a — 1). The corresponding scheme is:
Jia—Jfis S —fi
2 RS 2, (2.4)
3Ax Ax
the coefficient b vanishes. It results in the most compact scheme as follows:
fi+l - fpl
Aff S ol = a T

If o = é’ we obtain a sixth order tridiagonal scheme with the same formula as (2.4).

The cell-centered compact scheme (2.3) is originally designed for a staggered grid. It is called a staggered
scheme by Nagarajan et al. [31]. A Fourier analysis indicates that the wave resolution of these cell-centered
compact schemes is much better than other compact schemes of the same order of accuracy. For a non-stag-
gered grid, the cell-centered value f;,1 can be obtained by an interpolation from the function values on the grid
nodes. ’

af L+ S tofiy =b
Especially, if « =

ﬂ)

(2.5)

2.2. Compact interpolation

Lele [26] gave a compact formula to interpolate the value on a grid node from a staggered grid. In fact, as
can be seen from Fig. 2.1, the cell-centers and nodes correspond to a shift of half a mesh size. The compact
interpolation provides a compact method to transfer the values between the nodes and cell-centers. Hence, we
can use it to approximate the values on cell-centers:

c =

N . c b a
ﬁfzf— + (xfzf— +fz+, +oafiat+ Bfis = 5 (fiss + fi2) + E(fi+2 +fior) + 5 (fis1 + 1) (2.6)

Table 2.1
The coefficients and truncation error of the linear cell-centered compact schemes [26]
Order Coeflicients Truncation error
Fourth a=1%(9—6u—T78F+ 16c)

b=1%(=1+ 220+ 948 — 24c) o5 (9 — 620+ 1618 — 384¢)Ax* )
Sixth a = 115 (225 — 2060 — 254p)

b = 1 (=25 + 4140 — 114p)

i
384

(9 — 620+ 1618p) 1o (75 — 3540+ 2614B) AxS (7

Eighth B =k (3541 - 75)
= 515 (37950 — 392752)
b= s (~3550 + 631150)
¢ = pobze (—6114 + 256692) Tosgaizamn (96850 — 2885292)Ax’ 1)
Tenth =05« = o
683425 __ 505175

‘- S5088” b =Sms 939109 10 £(11)
¢ = 1317 STS997645313 A% /!
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Fig. 2.1. Shift by half a mesh size between the nodes and cell-center points.

Table 2.2 lists the coefficient constraints [26] corresponding to different orders of accuracy for the compact
interpolation (2.6).

2.3. Weighted interpolation

2.3.1. Basic idea of the weighted interpolation
The value on a cell center can also be interpolated locally from the node values on a stencil. In general, we

can get a (2r — 1)th order approximation based on the flux function in a stencil Sl = (Xizrty e v e s Xigre1)-
Using this stencil, the flux at any point can be evaluated as a interpolating polynomial:
2(r—
) = Z (x—x;). (2.7)
Evaluating the function at the cell-center x,,1, the (2r — 1)th order approximation is given by:
jﬁ»% :fzrq (xi+%> = qu—l i—rtly ey i+V*1>7 (28)

where the superscript L refers to the fact that the stencil $* ! is biased to the left relative to the interpolation
point x; i+l and ¢*~! depends linearly on the flux values f; in the stencil st
Similar to the reconstruction in [19], the stencil $*~' can be divided into r sub-stencils

2r—1 __ _
Sk - (xi+k7r+17xi+k7r+27'"7xi+k)a k—O,l,...,l”— 1.

In each of these substencils, the rth order approximation can be obtained

ffil G Siek—rity o fisn)s (2.9)
where
r—1
9 (8or- -2 &1) = D a8
=0
Table 2.2
Coeflicients of the transfer function [26]
Order Coefficients Truncation error
Fourth a=4(94 100 — 148 + 16¢)
b=3§(—1+ 60+ 308 — 24c) 5 (3 = 10a + 708 — 128¢) Ax* @
Sixth a =5 (754700 — 42B)
b = 5 (=25 + 1260 + 270p)
= 135 (3 = 10a + 708) 7 (5 — Lo+ 42B)AxS 1 ©
Eighth [3:5(1401— 5)
a=1(10+T7a)
b =15 (=50 + 1892)
c=%(-2+5x) ﬁ(lofzw)msﬂﬁ
Tenth %

12| s
o

(SIS
Il
- N‘&h
kA
IR

1 10 #(10
258048Ax -f( )

)
=N
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with a; ;, for 0 <k, / <r—1, being constant coefficients.
The value f L , can be obtained by a linear combination of f _

CIZFI i—r+ly ey )itr— l chqk 1+k )+lv"’;.ﬁ'+k) (210)

with suitable constants Cj, also called the linear weights.

The approximation (2.10) is linear. A scheme based on this approximation can not capture shock waves
and other discontinuities without spurious oscillations. Adopting the WENO idea, we use nonlinear weights
o}, to replace the linear weights C; and obtain a nonlinear approximation

1= Zwqu(f+k r+15'-'7ﬁ+k)7 (211)

+3

where the nonhnear weight wj for the stencil S,f’*l is given by:
%

= 2.12
R R 212
with
C;
o=k k=01, r—1. (2.13)
(e +1S})

Here ¢ is a small positive number which is introduced to avoid the denominator becoming zero. In our later
tests, we take ¢ = 107 (except for some accuracy tests in Section 4). IS is the smoothness indicator of the flux
function in the kth substencil which adopts the formulae given by Jiang and Shu [19] as:

r—1 X1 1 () 2
mzz/zmm@%@)w (2.14)
=1 %y

X

2.3.2. High order nonlinear weighted approximation
In this subsection we document the explicit formulae for the high order nonlinear weighted approximations.

(a) For r = 3 In the case of » = 3, the linear fifth order approximation is given by

7y = 135 iz = 2071 +907, 4 607y~ 57,.3) (2.15)
The three thlrd order approximations in the three substencils are
l+1 = (3f ,—10f,_, + 15f)), (2.16)
fla= —(—fH +6f:+3f 1), (2.17)
,M:W+“Hﬁ@~ (2.18)
The linear weights are given by
1 10 5
3_ 1 3 _ W 3_ 2
“=1 T8 2716 (2.19)
The smoothness indicators are
;1 , 13 )
IAN :Z(fid —4f . +31) "’E(/{ifz =2+ 1), (2.20)
1 13
IS% :Z(fi—l —ﬁ+1)2+ﬁ(fi—1 —Zfi+ﬁ+l)2a (2.21)

1 13
185 = Z(3ff —4f i +fi2) + 12 (fi = 2fin + fi2). (2:22)
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The fifth order approximation in (2.15) to the cell-centered value can be written as a convex combination of
the three third order approximations in (2.16)—(2.18)

,+1 = wof,p + wlf,+1 + wzf,+u (2.23)

if we take the combination coefficients w3 as in (2.12).Plugging the expressions of f 4l f it and f ,i; from
(2.16)—(2.18) into (2.23), we obtain ’

Fosy =g (i + 97+ 9% = fia) + g @Ri2 = 31y + 3~ fi)
by (0330 - 34 370 - ) 2.2
which can be rewritten as
Fiot = 1 (Sfis 9, 9 s — fi2) — 0u(Afr g My My, AT, (2.25)
where Af;.1 = fj1 — f; and
oy(a,b,c,d) = %wg(a —2b+c)+ é <w2 %) (b —2c+d).

Here, we have used the fact o] + @} + w3 = 1. The formula (2.20)~(2.22) and (2.25) are similar to those for the
WENO reconstruction (see (2.3) in [20]). Hence, all the analysis for the accuracy, the ability to capture strong
shock waves and the convergence to steady state of the WENO schemes [16,19,44] can be copied to the
weighted compact schemes discussed in this paper. For the implementation of the weighted interpolation, part
of the regular WENO reconstruction code can be copied to the weighted compact schemes as well. Similar
WENO interpolations have been used in [35].

(b) For r = 4.In the case of r = 4, the linear seventh order approximation is given by

Afﬂ 10124( S5fia+42f 5 = 175f, + 7001, + 525f . — 70, + 7f113)- (2.26)
The four fourth order approximations from the four substencils are
jgl = 418( 15/, 5+ 63f, 5 — 105f, | + 1057,), (2.27)
l+1 = (3f = I5f +45F, + 15f 1), (2.28)
2, = % (=3/1 4 27f, 4+ 27 s = 3 102), (2.29)
Py = g5 U570 +457 i = 1572+ 3102) (2.30)

The linear weights are given by
1 21 35 7
= 4:@ = &=—. (2.31)

The smoothness indicators are
ISE‘) = fi3(79788f,_3 — 5665681, , + 680328/, | — 273336f)
+ fi2(1027692f,_, — 25233841, + 1034568f)
+ fi-1(1610892f,_, — 1378728f") + 308748fl , (2.32)
IS‘I‘ = fi-2(38028f,_, — 232488 f,_, + 228168/, — 717361 ;)
+ fi-1(401292f, | — 847224f, + 277128f )
+ £:(492012f; — 364968f ., ,) + 79788)‘+17 (2.33)
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IS% = £, (797881, | — 364968, + 277128f,,, — 71736/ ,.,)

+ £,(492012f, — 8472241, | + 228168f, )

+ fi1(401292f,, | — 2324881,.,) + 3802812, (2.34)
IS% = £,(308748, — 1378728f,,, + 1034568, — 2733361 .5)

+ £11(16108921,,, — 2523384f, , + 6803281, 5)

+ fi12(1027692f ,,, — 566568, ) + 19788/2.,. (2.35)

(c) For r = 5.In the case of » = 5, the linear ninth order approximation is given by

. 1
S i1 = 75722 (3514 =360, 5+ 1764f, , — 58801, | +22050f;+ 176401, — 29401, + 5041, 3 —45f,.4).

732768
(2.36)
The five fifth order approximations from the five substencils are
FOy= 5 (1057, — 3407 s + 11347, — 12607, + 9457, (2.37)
. 1
}+7 384( 15f, 5+ 84f,_, —210f,_, +420f, + 1051 ..,), (2.38)
72, = 553 92— 607, + 2707, + 180, — 157,.5) (2:39)
. 1
f+% = 3ga (71311 + 1807, 4+ 2707y — 60f,5 +9f15), (2.40)
. 1
Fiiy = 5 (105F, 44207 1y = 210f 5 + 84 5 = 157..4). (241)
The linear weights are given by
1 9 63 21 9
s 4 s_ 7 5 O 5_ %0 57
07256 76 2T I8 T ea 27256 (242)

The smoothness indicators are

ISy = fi_4(1114835f, , — 102620081,  + 17985252f, , — 14254360f, | + 4301446f))

+ £i-3(23768432f,_, — 839624161, + 671485121, | — 20460952f")

+ fi-2(74964492f, , — 121605168, | + 37653348f,)

+ £;-1(50449520f, | — 32188024f,) + 534709112, (2.43)
ISy = £ 3(329267f, 5 — 2899576, + 47401321, — 3385432f, + 886342f,.,)

+ £;-2(6595472f,_, — 22176048 f,_, + 161961281, — 4311448, ,)

+ £i-1(193894201, | — 29385264, + 8042340f )

+ £i(11710736f, — 6846904f,, ) + 11148352 |, (2.44)
ISy = £;2(329267f,_, — 2406328 f,_, + 31999081, — 1845208f,,, + 393094f,.,)

+ £i-1(4914800f,_, — 13983024f, + 84049601, , — 1845208f,,,)

+ £,(10783116f, — 139830241, , + 3199908/ .,)

+ fi+1(4914800f | — 24063281 ,) + 32926712, (2.45)
1S3 = fi1(1114835f,_ — 68469041, + 80423401, | — 4311448, + 886342f.,)

+ £(11710736f, — 293852641, + 16196128 f,., — 33854321, ;)

+ £i11(193894201,, , — 221760481, + 4740132f,,5)

+ £142(6595472f ., — 28995761 ) + 32926712, (2.46)
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ISy = £,(5347001f, — 32188024f,,, + 376533481, — 20460952, + 4301446/, ,)
+ £01(504495201,, | — 1216051681, , + 67148512, 5 — 142543607 ,,,)
+ f1:2(74964492f, , — 839624161, 5 + 17985252, ;)
+ £143(23768432f,; — 102620081, ,) + 1114835/2,. (2.47)

The fourth order centered compact scheme combined with the fifth order weighted interpolation results in a
fourth order weighted compact scheme, to be denoted by WCOMP4 later. The sixth order centered compact
scheme combined with the fifth order and the seventh order weighted interpolations results in a fifth order and
a sixth order weighted compact scheme respectively, denoted by WCOMPS and WCOMP6. The eighth order
centered compact scheme combined with the seventh order and the ninth order weighted interpolations results
in a seven order and an eighth order weighted compact scheme respectively, denoted by WCOMP7 and
WCOMPS. Finally, the tenth order centered compact scheme combined with the ninth order weighted inter-
polation results in a ninth order weighted compact scheme, denoted by WCOMP9.

2.4. Boundary conditions

For non-periodic boundary conditions, the numerical scheme described in the previous sections can be used
to compute the flow variables in inner points. Besides this, the numerical scheme near the boundary is also
required. In this paper, we use the numerical boundary scheme proposed by Carpenter et al. [5] and Zhong
[48] to compute the physical variables at free flow boundary. For fourth order accuracy, this boundary scheme
is given by

St 3 = e (1T 497 4973~ ) (2.43)
S 44 =5 (30 3F) (249)
ot 3= g Uis = s =y 177, (2.50)
B+ A+ fa = 3 Ofy = i) @:51)

For solid wall boundary, through introducing ghost points, the spatial derivatives are symmetric to the wall
except that of the velocity component in the direction perpendicular to the wall which is anti-symmetric.

2.5. Flux splitting

The purpose of flux splitting is to introduce correct upwinding. In general, the flux can be split into two
parts:

fu)=f"(u)+f (u), (2.52)

where % > 0and ¥ ;Lf” < 0. In this paper, we use the Lax—Friedrichs flux splitting

£ ) = () o), 2.5)

where o = max, |f’(u)| with the maximum taken over some relevant range of u. For systems this o is chosen
differently for each characteristic field as the maximum of the corresponding eigenvalue of the Jacobian in that
field. We refer to [19] for the details of this process in the context of the WENO reconstruction which is similar
to our WENO interpolation.

During the weighted interpolation for the cell-centered value, we use the upwind biased stencils to get the
approximation f; - That is, the value fli% is interpolated from the point values in the stencil

+ — - _
ST = (xi—r41,- -, Xir—1) and the value fH% from S™ = (x40, .-, Xisr)-
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In this section, we just give the formulae of the fifth order interpolation as an example. f i is computed with
Eq. (2.25) on the stencil containing the five points i — 2, i — 1, i, i + 1 and i + 2. It takes the form:

. 1
i1 = 1 CSE LT 9 = ) = on(AfLL AL AL AL, (2.54)

Similarly, f, "l is computed on the stencil containing the five points i — 1, i, i + 1, i + 2 and i + 3. It takes the
form: ’

ol 1 B B B B B B B B
S} = 1_6 (—_/[;,1 + 9/[1 + 9fi+1 - .fi+2) + QDN(AJ[H%’ Afz+%’ Afi%’ Afz—%) (2'55)
Adding together fil and f.jrl gives the cell-centered value f;,;
it3 i+3 2
5 1 X X X X
fip= 16 (it 29+ 9 i1 = fis2) — on (A5 A AL AfZY + <1>N(Af+z, Afﬂ,A A ,L)
(2.56)

2.6. Time discretization

After the spatial derivative is discretized, we obtain a set of ordinary differential equations
~“_r 2.57
o= L), (257)

where the operator L(u) = —f, and £, at the grid points is approximated by the compact scheme (2.3) com-

bined with the compact interpolation or weighted interpolation. This set of ordinary differential equations
can be discretized by the third order TVD Runge-Kutta method [38] as follows:

u =" + AtL(u"), (2.58)
3 1 1

@ — Z 4+ 2V 2 AL (Y 2.

u 1" +4u +4 tL(u'), (2.59)
1 2 2

u'l = 3+ §”<2) + §AtL(u<2)). (2.60)

3. Fourier analysis of the errors

In this section, we discuss the dispersion and dissipation of the compact schemes in this paper using Fourier
analysis. A periodic grid function can be represented by its trigonometric interpolation

N/2-1 .
- 2mikx
fv(x) =Y feexp ( ; ) (3.1)
k=—N/2
where 1 = v/ —1. Differentiating the function yields
Nl
£is)= > iofiexp(ios) (3.2)
k=—N/2

where w = 2nkAx/L = 2nk/N and s = x/Ax are the scaled wave number and the scaled coordinate respec-
tively. The exact first derivative of the function (3.1) (with respect to s) has the Fourier coefficients
1 P = 1o /. By comparing the first derivative obtained from the finite difference scheme and the exact Fourier
coefficients, the modified wave number of a finite difference scheme can be obtained. From this process, the
modified wave number for the cell-centered compact scheme of Eq. (2.3) is [26]:

, 2asin(w/2) 4+ % sin(3w/2) 4 ¥ sin(5w/2)
Wi(w) = 1 + 20ccos(w) + 2B cos(2w)

(3.3)
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and the transfer function for the compact interpolation (2.6) is given by [26]:

T(w) = acos(w/2) + bcos(3w/2) + ccos(5w/2) .

1 4 2o cos(w) + 2 cos(2w)

Fig. 3.1 shows the modified wave number of the cell-centered compact scheme. We can observe that the cell-
centered compact scheme has really spectral-like resolution. Fig. 3.2 is the modified wave number of the cell-
centered compact scheme coupled with the compact interpolation. It is obvious that as the order of the
compact interpolation increases, the modified wave number approaches that of the cell-centered compact
scheme.

The modified wave number of the cell-centered compact scheme coupled with the weighted interpolation
(using linear weights) is as follows.

For the fourth order weighted compact scheme:

1

(3.4)

Real(w'(w)) = a(175sin(w) — 28 sin(2w) + 3sin(3w
(W (@) 128(1 4 2occos(w) + 2 cos(2w)) (a( (@) (20) (30))
b . . . . c . .
+ 3 (147 sin(w) + 150 sin(2w) — 25sin(3w) + 3sin(4w)) + 5 (—=25sin(w) + 150 sin(2w)
+ 150sin(3w) — 25sin(4w) + 3sin(5w))), (3.5)
30F —— ccs4
F - - ccsé o=
B o5f —moms ccss SE
y [ —————— cCs10 P
£ o - Exact s
E 20f p
15F
s
3 N
2 10f
35 C
] C
= 05F
0-0:1||||||||||||||||||||||||||||||
00 05 10 15 20 25 3.0
Wavenumber o
Fig. 3.1. Modified wavenumber of the cell-centered compact scheme (CCS).
3.0F —— 4th 30 —— 4th S
[ —----- 6th [ ------ 6th
3 25 _ ___________ 8th 3 95 _ ___________ 8th e
g [ 10th E [ —————— 10th
F CCs4 C :
£ o £ o
[ r o r
@ 15 2 s 15F
3 r 2 C
o [ ° [
& 10F £ 10f
k<] r 35 C
S C 2 C
= o5F = o5f
0. AR T T T T B _'....|....|....|....|....|....|.
00 05 10 15 20 25 3.0 00 05 10 15 20 25 30
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Fig. 3.2. Modified wavenumber of the cell-centered compact scheme. (left) Fourth order cell-centered compact scheme with a compact
interpolation of different orders of accuracy. (right) Sixth order cell-centered compact scheme with a compact interpolation of different
orders of accuracy.
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1
~ 128(1 +2acos(w) +2fcos(2m))

Im(w'(w)) = (a(30 —45cos(w) + 18cos(2w) — 3cos(3w))

+ g (—15+33cos(w) —30cos(2w) + 15cos(3w) — 3cos(4w)) + % (3 —15cos(w) +30cos(2w)
—30cos(3w) + 15cos(4w) — 3cos(Sw))). (3.6)
For the sixth order weighted compact scheme:

1

= T024(1 + 2xcos(e) T 2fcos(2)) (a(1470sin(w) — 294 sin(2w) + 54sin(3w) — 5sin(4w))

Real(w'(w))

(—240sin(w)

w| o

+ g (1176 sin(w) 4+ 1225 sin(2w) — 245 sin(3w) + 49 sin(4w) — Ssin(5w)) +
+ 1225sin(2w) + 1225 sin(3w) — 245 sin(4w) + 49 sin(5w) — 5sin(6w))), (3.7)

1
 1024(1 + 2acos(w) + 2B cos(2m))

Im(w'(w)) = (a(175 — 280 cos(w) + 140 cos(2w)

b
—40cos(3w) + Scos(4w)) + 3 (=105 + 210 cos(w) — 180 cos(2w) + 105 cos(3w)
— 35cos(4w) + 5cos(Sw)) +§(35 — 110 cos(w) + 175 cos(2w) — 175 cos(3w)
+ 105 cos(4w) — 35 cos(5w) + 5cos(6w))). (3.8)

For the eighth order weighted compact scheme:

, B 1 . . .
Real(w'(w)) = 32768(1 1 22005(w) T 2 c05(20)) (@(48510sin(w) — 11088 sin(2w) + 2673 sin(3w)

. : b . . .
—440sin(4w) + 35sin(Sw)) + 3 (37422 sin(w) + 40095 sin(2w) — 8855 sin(3w)

+ 2268 sin(4w) — 405 sin(5w) + 35sin(6w)) + % (—8415sin(w) + 39655 sin(2w)
+ 39690 sin(3w) — 8820 sin(4w) + 2268 sin(5w) — 405sin(6w) + 35sin(Tw))), (3.9)

1

- 4410 — 42 20) — 1
32768(1 1 22003(®) T 2fcos(20)) (a(4410 — 7350 cos(w) + 4200 cos(2w) — 1575 cos(3w)

Im(w/()) =

+ 350 cos(4w) — 35cos(Sw)) + g (—2940 + 5670 cos(w) — 4725 cos(2w) + 2975 cos(3w)

— 1260 cos(4w) + 315 cos(5w) — 35 cos(6w)) + % (1260 — 3255 cos(w) + 4445 cos(2w)

— 4410 cos(3w) + 2940 cos(4w) — 1260 cos(5w) + 315 cos(6w) — 35 cos(Tw))). (3.10)
On the other hand, the fifth order WENO scheme [19] (using linear weights) has the modified wave number
, 3. 3 . |
Real(w'(w)) = 3 sin(w) — 10 sin(2w) + ) sin(3w), (3.11)
, 11 1 1

Im(w'(w)) = — 3 + 3 cos(w) — 3 cos(2w) + 0 cos(3w). (3.12)

The seventh order WENO scheme [2] has the modified wave number
Real(w'(w)) = & (672 sin(w) — 168 sin(2w) + 32sin(3w) — 3 sin(4w)), (3.13)

1

Im(w'(w)) = 20 (105 — 168 cos(w) + 84 cos(2w) — 24 cos(3w) + 3 cos(4w)). (3.14)

The ninth order WENO scheme [2] has the modified wave number
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Real(w'(w)) = ﬁ (4200 sin(w) — 1200 sin(2w) + 300sin(3w) — 50 sin(4w) + 4sin(5w)), (3.15)
Im(w'(w)) = 7550 (504 — 840 cos(w) + 480 cos(2w) — 180 cos(3w) + 40 cos(4w) — 4 cos(5w)). (3.16)

The real part corresponds to the dispersion term of the scheme’s resolution to short waves and is shown in Fig.
3.3. The imaginary part corresponds to the dissipation and is shown in Fig. 3.4. We can see that the fourth
order weighted compact scheme has almost the same resolution as that of the fifth order WENO scheme.
The sixth and eighth order weighted compact schemes have better resolution to short waves than the counter-
parts of WENO schemes. The compact schemes have lower dissipation than the counterparts of WENO
schemes.

4. Accuracy tests

In this section, we test the accuracy of the weighted compact schemes. In the following examples, we have
adjusted the time step to Af = Ax3 for the rth order schemes so that time discretization error will not dominate.

3.0F - —o-— wcomps
g - - - WENO5
b WCOMP6
S 2s5f WENO7
g r WCOMPS
b WENO9
S 200 et 00
> C &8 s@igxh
2 15¢ =TT
3.l
€ 10f ol
'g [ \Q'_-.‘
S
= 05[ ;
N \
0.0:111|I||||I||||I||||I||||I||||I|
00 05 10 15 20 25 3.0
Wavenumber

Fig. 3.3. Modified wave number of weighted compact schemes and a comparison with WENO schemes.
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Fig. 3.4. Dissipation of the weighted compact schemes and a comparison with WENO schemes.
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4.1. The accuracy of weighted compact schemes with ¢ = 107°

The parameter ¢ in (2.13) is a small positive number to avoid the denominator becoming zero. In most
applications of WENO schemes, e.g. those in [45,46], it is taken as ¢ = 107°. We will test the accuracy with
this choice of ¢ in this subsection.

We solve the following linear scalar equation:

u,+u, =0, —-1<x<1, (4.1
u(x,0) = u’(x), periodic

with three different initial conditions: «°(x) = sin(nx), u°(x) = sin (nx - @) and u°(x) = sin*(mx).

In Tables 4.1, the L; and L, errors and numerical orders of accuracy are given for the weighted compact
schemes of different order for the first initial condition at # = 1. This is an easy test case and the designed order
of accuracy is achieved in all cases.

For the second initial condition, used in [16], there are two critical points where /' = 0 but /" £ 0. Table
4.2 contains the errors and numerical orders of accuracy at t = 2. We can observe, in the L; norm, all the
weighted compact schemes can achieve the designed order of accuracy. However, in the L, norm, the order
of accuracy achieved seems to be lower than the designed order. We will discuss this issue further in the next
subsection.

The third case is a more demanding test case because it has a higher order critical point with
"= f"=f"=0atx=0. Table 4.3 contains the numerical results at # = 10. We observe that all the schemes
reach the designed accuracy much later during the mesh refinement than that for the previous two initial
conditions.

4.2. The influence of ¢ and the mapped function for the smoothness indicator

The parameter ¢ in (2.13) has some effect on the accuracy of WENO schemes for smooth solutions [16]. In
order to test the role of this parameter on the rate of convergence of the weighted compact schemes, we sim-

ulate the linear equation (4.1) with the initial condition u°(x) = sin (ﬂ:x - @), which is the one most sensi-

tive to the choice of ¢ for regular WENO schemes [16]. In Table 4.4, we list the errors and numerical orders of
accuracy for the fifth order weighted compact scheme using ¢ = 10~ and ¢ = 107", It can be observed that

Table 4.1
L, and L, errors and numerical orders of accuracy on u, + u, = 0 with u(x) = sin(nx) for the fourth order, sixth order and eighth order
weighted compact schemes

Method N L error L, order L., error L., order
WCOMP4 10 1.68E—2 2.73E-2
20 8.16E—4 4.36 1.46E-3 4.22
40 3.35E-5 4.61 5.83E-5 4.65
80 1.56E—6 443 2.66E—6 4.45
160 8.10E—8 4.28 1.34E-7 4.31
WCOMP6 10 2.45E-3 5.38E-3
20 3.31E-5 6.21 1.01E—4 5.74
40 4.60E—7 6.18 2.44E—6 5.37
80 6.93E-9 6.05 6.60E—8 5.21
160 9.30E—11 6.22 1.61E-9 5.36
WCOMPS8 10 2.52E—4 4.51E—-4
20 3.23E-7 9.61 741E-7 9.25
40 5.46E—10 9.21 1.48E-9 8.97
80 1.16E—12 8.88 3.19E—12 8.86
160 2.96E—15 8.61 6.79E—15 8.88

N is the total number of grid points in a uniform mesh. # = 1.
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Table 4.2
L, and L, errors and numerical orders of accuracy on u, + u, = 0 with uy(x) = sin(mx — sin(nx)/n) for the fourth order, sixth order and
eight order weighted compact schemes

Method N Ly error Ly order L., error L., order
WCOMP4 10 5.80E-2 1.29E—1
20 4.99E-3 3.54 1.09E-2 3.57
40 3.40E—4 3.88 9.68E—4 3.49
80 1.73E-5 4.30 7.95E-5 3.61
160 8.81E-7 4.29 7.16E—6 3.47
WCOMP6 10 243E-2 5.98E-2
20 6.16E—4 5.31 1.86E—3 5.01
40 6.53E—6 6.56 3.05E-5 5.93
80 5.47E-8 6.90 4.79E-7 5.99
160 5.10E—10 6.74 8.16E—9 5.88
WCOMP8 10 1.24E-2 3.11E-2
20 6.48E—5 7.58 1.55E—4 7.65
40 2.23E-7 8.18 8.46E—7 7.52
80 8.17E—10 8.09 6.33E-9 7.06
160 2.66E—12 8.26 3.92E-11 7.34

N is the total number of grid points in a uniform mesh. ¢ = 2.

Table 4.3

L and L, errors and numerical orders of accuracy on u, + u, = 0 with uo(x) = sin*(mx) for the fourth order, sixth order and eighth order

weighted compact schemes

Method N L error L, order L., error L, order
WCOMP4 10 3.56E—1 4.46E—1
20 1.42E—1 1.33 3.12E-1 0.52
40 2.62E-2 2.44 6.18E-2 2.33
80 2.21E-3 3.57 4.20E-3 3.88
160 1.64E—4 3.76 6.20E—4 2.76
WCOMP6 10 3.56E—1 4.68E—1
20 9.27E-2 1.94 2.07E—1 1.18
40 7.22E-3 3.68 1.40E-2 3.88
80 3.06E—4 4.56 1.17E-3 3.59
160 1.10E—6 8.12 5.15E—-6 7.82
WCOMP38 10 2.78E—1 4.04E—1
20 5.56E-2 2.32 1.07E—1 1.91
40 5.16E—4 6.75 1.67E-3 6.00
80 1.87E—6 8.10 7.46E—6 7.81
160 3.05E-9 9.26 2.07E-8 8.49

N is the total number of grid points in a uniform mesh. # = 10.

there is essentially no difference between the results with these two different values of ¢. Similar conclusions
hold for the weighted compact schemes of other orders of accuracy. It seems that the convergence rate of
the weighted compact schemes is less sensitive to the choice of ¢ than the regular WENO schemes [16].

For the regular fifth order WENO scheme, Henrich et al. [16] pointed out that the nonlinear weights with
the smoothness indicator in [19] may lose accuracy at certain smooth extrema. To solve this problem, they
introduced a mapping function:

_ oG+ (C)’ =3Cim + o)

gilo) =St e (42)

where w € [0, 1] and » = 0,1,2. This function is monotonically increasing with a finite slope and g;(0) =0,
(1) =1, g(Cy) = C,, (g,(C;)) = 0 and (g;(C}))" = 0. The mapped nonlinear weights are given by
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Table 4.4
The comparison between the results of different ¢ for L, and L, errors and numerical orders of accuracy on u, +u, =0 with
u(x) = sin(mx — sin(nx)/m)

€ N L, error L order L., error L., order
10°¢ 10 5.92E—2 1.30E—1
20 4.43E-3 3.74 1.17E-2 3.48
40 2.85E—4 3.96 9.65E—4 3.60
80 1.51E=5 4.23 9.52E—5 3.34
160 7.46E—7 434 9.11E—6 3.38
10720 10 5.92E-2 1.30E—1
20 4.43E-3 3.74 1.17E-2 3.48
40 2.85E—4 3.96 9.65E—4 3.60
80 1.52E-5 423 9.56E—5 3.34
160 7.72E-7 430 9.59E—6 3.32

Fifth order weighted compact scheme. N is the total number of grid points in a uniform mesh. # = 2.

ot = gi(}). (4.3)

The WENO schemes based on these mapped nonlinear weights are able to achieve the designed high order
accuracy for general smooth solutions independent of the choice of ¢ [16]. We test these mapped nonlinear
weights, with ¢ = 1072, for our weighted compact schemes. The results are listed in Table 4.5. Compared with
the results in Table 4.2, we observe an apparent improvement for the order of accuracy in the L, norm, and
also the magnitude of the errors for the same mesh has been significantly reduced for most cases. Similar con-
clusions hold for higher order weighted compact schemes.

Table 4.5
L, and L, errors and numerical orders of accuracy on u, + u, = 0 with u(x) = sin(mx — sin(nx)/m) for the mapped weighted compact
scheme with ¢ = 1072

Method N Ly error Ly order L., error L., order
MWCOMP4 10 3.89E-2 9.14E-2
20 2.56E-3 3.93 6.56E—3 3.80
40 1.33E—4 4.27 3.64E—4 4.17
80 6.95E—6 4.26 1.87E-5 4.28
160 3.91E-7 4.15 1.04E—6 4.17
MWCOMP5 10 3.42E-2 7.59E-2
20 1.48E-3 4.53 3.99E-3 4.25
40 5.35E-5 4.79 1.63E—4 4.62
80 1.73E-6 495 4.88E—6 5.06
160 5.47E-8 4.99 1.54E-7 4.99
MWCOMP6 10 1.53E-2 3.64E-2
20 2.22E-4 6.10 6.68E—4 5.77
40 1.98E-6 6.80 6.36E—6 6.71
80 1.72E-8 6.85 5.81E-8 6.77
160 1.62E—10 6.73 5.61E—10 6.69
MWCOMPS 10 7.25E-3 1.64E—2
20 4.19E-5 7.43 1.24E—4 7.04
40 9.89E—8 8.73 3.25E-7 8.58
80 2.06E—-10 8.91 6.84E—10 8.89
160 2.02E—-11 3.35 421E-11 4.02

N is the total number of grid points in a uniform mesh. 1 = 2.
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5. Numerical tests and comparison
5.1. Scalar cases

The first example is the following nonlinear scalar Burgers’ equation

u, + (%Z)xzo (5.1)

with the initial condition u(x,0) = 0.5 4 sin(nx). In Fig. 5.1, we show the solution at # = 1.5/ with a shock
near x = 1.2. We can observe that all the weighted compact schemes give similarly good results for this scalar
problem. They perform very well to capture this discontinuity.

Our second scalar example is the Buckley—Leverett problem that is governed by the equation

4u?

The initial condition is u = 1 for —1 < x < 0 and u = 0 elsewhere. The solution is computed up to ¢ = 0.4. Fig.
5.2 shows the numerical solutions of the fourth, sixth and eighth order weighted compact schemes. Again, all
these schemes perform similarly well for this example.

1.5
1.0}
305
[
0.0 L o WCOMP4
3 o WCOMP6
S WCOMP8
[ Exact
ol MR
0.0 0.5 1.0 1.5 2.0
X

Fig. 5.1. Solution of the nonlinear Burgers’ equation with the initial condition u(x,0) = 0.5 + sin(nx) at # = 1.5/ with 100 grid points.
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Fig. 5.2. Solution of the Buckley—Leverett problem. 1 = 0.4. N = 200 grid points.
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5.2. 1D Euler equation

The 1D Euler equation is given by
U +FU), =0, (5.3)

where U = (p, pu,e)’, F(U) = (pu, pu® + p,u(e + p))". Here p is the density, u is the velocity, e is the total en-
ergy, p is the pressure which is related to the total energy by e = -5 + 1pu?, the ratio of specific heat y = 1.4.

We consider three typical examples. The first problem is the Shu—Osher problem [39]. It describes the inter-
action of a Mach 3 shock with a density wave. A Mach 3 shock is initially located at x = —4 and moves to the
right. A sine wave is superposed to the density in the right region to the shock which is given by
(p,v,P) = (1 4+ ¢sin(5x),0,1). The amplitude of the sine wave is ¢ = 0.2. The value downstream of the shock
wave is computed by the Rankine-Hugoniot relation [34].

The second is the Sod problem [41]. The initial condition is:

(pL qr,pL) = (1,0,1) when x <0,
(Pr>49r,Pr) = (0.125,0,0.1) when x > 0.

The third is the Lax problem [24] with the initial condition:
(oL, q1,pL) = (0.445,0.698,3.528) when x < 0,
(Prsqr;pr) = (0.5,0,0.571) when x > 0.

Figs. 5.3-5.5 show the density distributions of the numerical solutions corresponding to the three problems
described above. We observe a good non-oscillatory resolution of the discontinuities by all the compact
schemes, which is comparable to the resolution of discontinuities by regular WENO schemes [19]. The reso-
lution to the smooth solution structure in Fig. 5.3 is very good, especially for the higher order weighted com-
pact schemes.

5.3. 2D Euler equation

The 2D Euler equation is given by

U +FU),+GU), =0, (5.4)
5t
4t
2 | 2
@ L0 7]
c 3 c
o | o
o [ o
2F ----- WCOMP4
[ —mmmm WCOMP6
————— wcomps
1k Exact
-4 -2 0 2 4
X X
(a) global view (b) locally zoomed

Fig. 5.3. Density distribution for the Shu-Osher problem with 400 grid points at + = 1.8. The “exact solution” is obtained by WENOS5
with 8000 grid points.
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Fig. 5.